基于多维联想记忆神经网络的图像回忆  

Image Recalling Based on Multidimensional Associative Memory Neural Network

在线阅读下载全文

作  者:杨家稳[1,2] 孙合明[1] 

机构地区:[1]河海大学理学院,南京210098 [2]滁州职业技术学院,安徽滁州239000)

出  处:《计算机工程》2012年第9期177-179,共3页Computer Engineering

基  金:安徽省高校省级自然科学基金资助项目(KJ2011B119)

摘  要:多维联想记忆神经网络在高噪声情况下图像回忆效果差。针对该问题,将图像矩阵垂直分成4个同型小矩阵,依次将4个小矩阵垂向聚合成一个新矩阵,以新矩阵的列向量作为库向量。数值实验结果表明,相比2个列向量构成的库向量,以4个列向量构成的库向量进行回忆的灰度图像更清晰且效率更高。Multidimensional associative memory neural networks can be used for image recalling. When the image is corrupted by high noise, the recalling image is not clear using the traditional method. In order to make the recalling image clearer, one library vector made up of four column vectors is used in the recalling image to take the place of the other traditional library vectors made up of two column vectors. That is, a new matrix is formed by vertically dividing the mage matrix into four small matrices of the same order and vertically concatenating the four matrices in order. A column vector of the new matrix is regarded as a library vector. Numerical examples show that the restored image is clearer and the recalling process spends less time when the former library vector is used.

关 键 词:多维联想记忆 神经网络 投影 库向量 图像回忆 图像矩阵 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象