检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈一虎[1]
出 处:《计算机工程与应用》2012年第13期39-43,52,共6页Computer Engineering and Applications
基 金:陕西省教育厅科学研究计划项目(No.09JK329;No.2010JK400);陕西省自然科学基础研究计划项目(No.2009JM1013);宝鸡文理学院科研计划项目(No.ZK10115)
摘 要:结构学习是贝叶斯网络的重要分支之一,而由数据学习贝叶斯网络是NP-完全问题,提出了一个由数据学习贝叶斯网络的改进算法。该算法基于互信息知识构造初始无向图,并通过条件独立测试对无向边添加方向;同时提出了一个针对4节点环和5节点环的局部优化方法来构造初始框架,最后利用贪婪搜索算法得到最优网络结构。数值实验结果表明,改进的算法无论是在BIC评分值,还是在结构的误差上都有一定的改善,并且在迭代次数、运行时间上均有明显降低,能较快地确定出与数据匹配程度最高的网络结构。Structure learning is one of the most important branches in Bayesian network, while learning Bayesian network structures from data is NP-complete. An improved algorithm is provided for learning Bayesian network structures from data. It constructs the initial undirected graph based on mutual information, and then orients undirected edges by using conditional independence tests, additionally a local optimal method for four-node and five-node loops is proposed to construct the initial draft about the structure, finally greedy search is performed to explore the optimal structure. Numerical experiments show that both the BIC score and structure error have some improvements, and the number of iterations and running time are greatly reduced. Therefore the structure with highest degree of data matching can be relatively faster determined by the improved algorithm.
关 键 词:贝叶斯网络 结构学习 互信息 条件独立性测试 贪婪搜索
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143