检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭耸[1] 顾国昌[1] 蔡则苏[2] 刘海波[1] 沈晶[1]
机构地区:[1]哈尔滨工程大学计算机科学与技术学院,哈尔滨150001 [2]哈尔滨工业大学计算机科学与技术学院,哈尔滨150001
出 处:《高技术通讯》2012年第4期382-387,共6页Chinese High Technology Letters
基 金:863计划(2006AA042259),中央高校基本科研业务费专项资金(HEUCF100606,HEUCF100604,HEUCFZ1010)和国家教育部博士点专项基金(20092304120013)资助项目.
摘 要:为了较好地解决被部分遮挡的人脸的检测问题,提出一种基于组件距离匹配度函数的人脸检测方法。该算法首先采用基于支持向量机的Adaboost算法即AdaboostSVM算法对输入图像进行人脸各组件的检测,然后根据组件间距离的均值和方差构建组件距离匹配度函数,并提出基于组件距离匹配度函数的组件整合验证算法,在此基础上对被遮挡的组件的位置进行估计,进而实现部分遮挡的人脸的检测与定位。实验结果表明,该方法能够提高部分遮挡的人脸的检测性能与速度,能够在复杂背景下对被部分遮挡的人脸进行较为准确的定位与检测。To solve the problem of detecting the faces with partial occlusions better, a face detection method based on the component distance matching degree function was proposed. The method was carried out in the study as below: Firstly, the AdaboostSVM algorithm, i.e. the Adaboost algorithm based on a support vector machine (SVM), was used to detect the components of the faces included in the input image. Then, the component distance matching degree function was given, which was determined by the mean and variance of the components' distance together. The component integration verification algorithm based on the function of the component distance matching degree was proposed, and the locations of the occluded components were estimated. Finally, the faces with partial occlusions were detected and located. The experimental results show that the proposed algorithm can enhance the performance and the speed of detection of partially occluded faces, and can detect the faces with partial occlusions exactly in a complex background.
关 键 词:人脸检测 基于组件 部分遮挡 AdaBoostSVM 组件距离匹配度
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173