检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093
出 处:《微计算机信息》2012年第5期27-28,115,共3页Control & Automation
摘 要:最小均方算法是应用最广泛的自适应算法之一,但其收敛速度欠佳。在传统NLMS算法的基础上,提出了重复调整归一化最小均方算法(DRNLMS)即在相邻两输入信号样本的间隔时间进行额外调整运算,以提高算法的收敛性,并通过计算机仿真实现该算法。Least mean square algorithm is one of the most widely used adaptive algorithms in adaptive filtering, but its poor conver- gence performance. On the basis of traditional NLMS algorithm, Data-reusing normalized least mean square algorithm (DRNLMS) was put forward, i.e. input signal samples in adjacent two additional adjustment time interval of computing, to improve convergence per- formance, and realize this algorithm through computer simulation.
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117