检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2012年第6期1738-1740,共3页journal of Computer Applications
基 金:教育部人文社会科学研究规划基金资助项目(11YJAZH040)
摘 要:软件开发过程中准确有效地预测具有缺陷倾向的软件模块是提高软件质量的重要方法。属性选择能够显著地提高软件缺陷预测模型的精确度和效率。提出了一种基于互信息的属性选择方法,将选择出的最优属性子集用于软件缺陷预测模型。方法采用了前向搜索策略,并在评价函数中引入非线性平衡系数。实验结果表明,基于互信息的属性选择方法提供的属性子集能提高各类软件缺陷预测模型的预测精度和效率。Predicting defect-prone software modules accurately and effectively is an important way to control the quality of a software system during software development.Feature selection can highly improve the accuracy and efficiency of the software defect prediction model.A mutual information-based feature selection method for software defect prediction was proposed.The optimal feature subsets generated by the proposed approach were applied to train and test various prediction models.Forward search was introduced into the proposed approach,and nonlinear equilibrium coefficient was also added to the evaluation function.The experimental results show that all the classifiers achieve higher accuracy and performance by using the feature subset provided by the proposed approach.
关 键 词:软件质量 互信息 属性选择 最优属性子集 缺陷预测
分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229