检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:殷瑜[1,2] 戈梅 钱秀萍[1] 陈代杰[1,3]
机构地区:[1]上海交通大学药学院,200240 [2]上海来益生物药物研发中心,200240 [3]上海医药工业研究院,200040
出 处:《中国医药生物技术》2012年第3期197-201,共5页Chinese Medicinal Biotechnology
基 金:"重大新药创制"科技重大专项(2009ZX09302-004);国家自然科学基金(81102355)
摘 要:目的基于反义RNA沉默技术构建针对细菌FabI的超敏全细胞筛选模型,用于筛选FabI抑制剂。方法以Escherichia coli基因组DNA为模板,PCR扩增屈6,基因的-74~86bp核苷酸序列,反向插入携带pairedtermini结构的反义质粒pHN678中,得到重组质粒pHNF,再转化至E-coli中,得到反义工程菌E.coli/pHNF;通过平板表型观察对反义工程菌进行筛选;考察了IPTG浓度对筛选模型的影响,确定96孔板抗菌筛选模型的条件,并用三氯生作为阳性对照、氨苄西林和浅蓝菌素作为阴性对照对该模型进行评价。结果获得了针对廊6,的反义工程菌,确定了最适IPTG浓度为40μmol/L,成功构建了FabI特异性酶抑制剂的超敏全细胞筛选模型,并验证了其可行性。应用该筛选模型对5847个内生真菌次级代谢产物进行活性筛选,初筛阳性率约为9.7%,经复筛后获得8份阳性样品。结论成功建立了基于反义RNA沉默技术的FabI超敏全细胞筛选模型,并利用该模型筛选到8份阳性样品。Objective To establish a highly sensitive whole-cell screening model targeting FabI based on antisense RNA silencing technology for FabI inhibitors screening. Methods In order to improve silencing effect, vector with paired termini was utilized. Transformants were identified by phenotype screening on solid plates. Effect of IPTG concentration was studied and the optimal screening parameters were determined. Triclosan and ampicillin were used as positive and negative control to evaluate the feasibility of this screening model, respectively. Results FabI antisense strain was obtained. The optimal concentration of IPTG was 40 ~tmol/L. The highly sensitive whole-cell FabI specific inhibitor screening model was established and evaluated. 5847 fermentation samples from endophytic fungi were screened and the positive rate was about 9.7%. Eight active samples were gained in secondary screening. Conclusion One highly sensitive whole-cell FabI specific inhibitor screening model was established based on antisense RNA technology and eight active samples were gained.
关 键 词:RNA 反义 药物评价 临床前 烯脂酰-ACP还原酶
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.68.71