基于粗糙神经网络的传感器网络故障诊断  被引量:6

FAULT DIAGNOSIS OF WIRELESS SENSOR NETWORK BASED ON ROUGH SET AND NEURAL NETWORK

在线阅读下载全文

作  者:曹静[1] 高英[1] 高惠平[1] 任维政[1] 

机构地区:[1]北京邮电大学电子工程学院,北京100876

出  处:《计算机应用与软件》2012年第5期64-66,共3页Computer Applications and Software

基  金:国家高技术研究发展计划目标导向类课题(2009AA12Z324)

摘  要:为了克服大量信息冗余和能量有限给无线传感器网络故障诊断带来的困难,提出一种将粗糙集与神经网络集成相结合的智能故障诊断方法(RS-ANNE)。该方法首先利用粗糙集理论的属性约简技术,提取诊断故障贡献最大的最小故障诊断特征集合,然后根据最小故障诊断特征确定神经网络的初始拓扑结构,建立故障特征与故障之间的映射关系,最后通过子网表决得到最终诊断结果。实验结果表明,RS-ANNE诊断方法诊断正确率为95.67%,与ANNE方法相比计算量减小22.98%,诊断正确率提高13.88%。An intelligent fault diagnosis method combining the rough set and the artificial neural network(RS-ANNE) is presented to solve the difficulties in wireless sensor network fault diagnosis caused by energy limitation and substantive superfluous information.It first utilises the attribute reduction of rough set theory to extract the minimum fault diagnosis feature set which contributes the most to fault diagnosis,and then determines the preliminary topological structure of neural network according to minimum fault diagnosis feature,followed by setting up the mapping relation between the fault features and the faults themselves,in the end the final diagnosis results are derived through subnet voting.Experimental results show that the diagnosis accuracy of RS-ANNE method is 95.67%,it has 22.98% less computation load and 13.88% higher diagnosis accuracy than those of the ANNE's.

关 键 词:无线传感器网络 故障诊断 粗糙集 神经网络 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象