检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林庆[1,2] 李佳[1] 雍建平[1] 廖定安[3]
机构地区:[1]江苏大学计算机科学与通信工程学院,镇江212013 [2]南京大学计算机科学与技术学院,南京210094 [3]常州纺织服装职业技术学院信息技术系,常州213164
出 处:《计算机科学》2012年第5期243-245,270,共4页Computer Science
基 金:国家自然科学基金(61170126);江苏省自然科学基金(BK2009199;BK2010339)资助
摘 要:针对NMF(非负矩阵分解)算法基于局部特征提取的特点,提出了一种对NMF基矩阵的处理方法,以提高在局部遮挡环境下人脸识别系统的识别率。首先使用离散小波变换得到样本的低频信息,利用NMF得到基矩阵;然后通过阈值判断提取能够突出表现人脸特征的部分,得到优化后的特征子空间,并将样本在该子空间上投影;最后使用支持向量机对所得到的投影系数分类。实验结果表明,优化算法其运算时间较短,且能有效地提高人脸在部分遮挡环境中的识别率。Non-negative matrix factorization(NMF) is a method of parts-based feature extraction,according to this characteristic.An improved algorithm dealing with NMF basis was introduced to enhance partial occlusion face recognition rate.Firstly,discrete wavelet transformation was used to produce a representation in the low frequency domain,and basic matrix was got according to the NMF method.Secondly,parts of face features which possess outstanding perfor-mance were extracted by threshold value judgments,and they were used to form optimized facial subspace feature.The training and testing images were projected to the optimized subspace feature.Finally support vector machine was used for classification.Experiments show that the improved algorithm's computing time is short,and this method achieves remarkable effects under the partially occluded circumstance.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.143.110.248