检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学船舶海洋与建筑工程学院,上海200240 [2]浙江大学宁波理工学院土木建筑工程分院,浙江宁波315100 [3]河南理工大学土木工程学院,河南焦作454003
出 处:《东华大学学报(自然科学版)》2012年第2期234-240,共7页Journal of Donghua University(Natural Science)
基 金:宁波市自然科学基金资助项目(2006A610100)
摘 要:为从理论上获得锚固类结构内锚固段注浆体第二交结面上的黏结应力分布规律,首先建立平面应变条件下锚固类结构拉拔理论模型,然后假设交结面上的应力函数Φi=fi(w)×gi(z),通过引入应力平衡方程和边界条件得到交结面黏结应力与中间变量ga(z)和τ2(z)/τ1(z)有关,最后基于假定两个交结面上的黏结应力比τ2(z)/τ1(z)以及最小能量原理推导出锚索、注浆体和周边介质之间的黏结应力.For achieving a theoretical solution of elastic stress transfer with friction at the second debonded interface for anchorage type structures,aplane strain pull-out model was established and a bond stress functionΦi =fi(w)×gi(z)was assumed.By introducing stress equilibrium equations,boundary and continuity conditions,it was found that ga(z)andτ2(z)/τ1(z)determined the bond stress through interfaces.The bond stress through interfaces between anchor,grout and matrix was first derived based on the minimum complementary energy principle and a assumed ratio of bond stress between two interfaces.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.95.146