超弹性形状记忆合金的神经网络连续本构模型  被引量:2

Continuous constitutive model for superelastic shape memory alloy based on neural network

在线阅读下载全文

作  者:任文杰[1,2] 何鹏飞[1,2] 周戟[1,2] 

机构地区:[1]河北工业大学土木工程学院,天津300401 [2]河北省土木工程技术研究中心,天津300401

出  处:《功能材料》2012年第11期1396-1398,1402,共4页Journal of Functional Materials

基  金:国家自然科学基金面上资助项目(50978081);教育部高等学校博士学科点专项科研基金资助项目(20091317120002);住宅与城乡建设部科学技术资助项目(2011-K3-18)

摘  要:对超弹性形状记忆合金(SMA)丝在不同应变幅值和荷载速率下进行加卸载单轴拉伸试验,分析其滞回特性随环境因素的变化规律。将径向基函数神经网络(RBFNN)和Graesser模型结合起来,Graesser模型参数取自试验曲线,能由数学式确定的模型参数和应变幅值、荷载速率一起作为网络的输入信息,不能由数学式确定的模型参数作为输出神经元。数值计算表明,RBFNN可以精确地预测Graesser模型参数,且计算的SMA应力-应变曲线与Graesser模型结果吻合很好。One-dimensional loading-unloading tests on superelastic SMA wires were performed at varying strain amplitudes and loading rates to evaluate the effects of strain amplitude and loading rate on the hysteretic behaviors.The combination of the Graesser's model and the radial basis function neural network(RBFNN) was proposed,i.e.the parameters of the Graesser's model were acquired from the experimental data,the parameters that were determined by the mathematical expressions,strain amplitude and loading rate constitute the input information of the network,and the output neurons were made up of the Graesser's model parameters that were not determined mathematically.Numerical simulations indicate that the RBFNN can predict the parameters of Graesser's model accurately,and the simulated stress-strain curvesby the RBFNN-Graesser's model agree with the results of the Graesser's model very well.

关 键 词:形状记忆合金 超弹性 Graesser模型 径向基函数神经网络 

分 类 号:TG139.6[一般工业技术—材料科学与工程] TU352.11[金属学及工艺—合金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象