检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京理工大学计算机学院媒体计算与智能系统实验室,北京100081
出 处:《北京理工大学学报》2012年第3期274-280,共7页Transactions of Beijing Institute of Technology
基 金:国家自然科学基金资助项目(90920009)
摘 要:为了解决云台摄像机的行人跟踪问题,提出了一种基于粒子滤波的行人跟踪算法.该方法在目标灰度模板以外,学习并更新行人目标的轮廓模板.考虑到行人轮廓因为视角变化可能发生的突然改变,算法准备了多套从不同视角观测的轮廓模板,并且逐渐更新它们使之可以逐渐捕捉目标的轮廓特征.在多段云台摄像机拍摄的监控视频上测试了所提出的算法.实验结果显示,该算法比其他先进的跟踪算法有更长的准确跟踪时间.This paper presents a novel particle-based pedestrian tracking algorithm for PTZ camera surveillance.Most of the state-of-art particle-based tracking algorithms are challenged due to lacking of a reliable moving object detection and drastic scale along with perspective shift of the target.Therefore,pure intensity based algorithms usually miss the target gradually without other features for correcting target location.Our method learns and maintains a contour template of the target besides intensity.Taking into account both the evolution and sudden change of the pedestrian contour,the proposed tracking algorithm maintains several sets of profiles from different perspectives and evolves them incrementally.The effectiveness of our tracking algorithm with extra contour measurement has been tested over several surveillance records captured from PTZ camera.Compared with other cutting edge tracking algorithms,this presented algorithm could estimate the target location more robustly.
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31