机构地区:[1]Department of Neurosurgery, Huashan Hospital, Shanghai 200040, China [2]Department of Radiology, Huashan Hospital, Shanghai 200040, China
出 处:《Chinese Medical Journal》2012年第11期2057-2061,共5页中华医学杂志(英文版)
基 金:This study was supported by grants from the National Natural Science Foundation of China (No. 30872675 and No. 30901549), Shanghai Committee of Science and Technology (No. 08411965100), and 2011 Shanghai Medical College Young Scientist Fund of Fudan University (No. 11L-24).
摘 要:Background The Dextroscope system by Volume Interactions (Singapore) had been applied to minimally invasive neurosurgery in many units. This system enables the neurosurgeon to interact intuitively with the three-dimensional graphics in a direct manner resembling the way one communicates with the real objects. In the paper, we explored its values in pre-operation surgical planning for intracranial meningiomas resection. Methods Brain computed tomography (CT), magnetic resonance imaging (MRI), and magnetic resonance venography (MRV) were performed on 10 patients with parasagittal and falcine meningiomas located on central groove area; brain CT, MRI and magnetic resonance angiography (MIRA) were performed on 10 patients with anterior skull base meningiomas and 10 patients with sphenoid ridge meningiomas. All these data were transferred to Dextroscope virtual reality system, and reconstructed. Then meningiomas, skull base, brain tissue, drainage vein and cerebral arteries were displayed within the system, and their anatomic relationships were evaluated. Also, the simulation operations were performed. Results For parasagittal and falcine meningiomas, the relationships of tumor with drainage vein and superior sagittal sinus were clearly displayed in the Dextroscope system. For anterior skull base and sphenoid ridge meningiomas, the relationships of tumor with bilateral internal carotid arteries, anterior cerebral arteries, middle cerebral arteries and skull base were vividly displayed within the virtual reality system. Surgical planning and simulation operation of all cases were performed as well. The real operations of all patients were conducted according to the simulation with well outcomes. Conclusions According to the virtual reality planning, neurosurgeons could get more anatomic information about meningioma and its surrounding structures, especially important vessels, and choose the best approach for tumor resection, which would lead to better prognosis for patients.Background The Dextroscope system by Volume Interactions (Singapore) had been applied to minimally invasive neurosurgery in many units. This system enables the neurosurgeon to interact intuitively with the three-dimensional graphics in a direct manner resembling the way one communicates with the real objects. In the paper, we explored its values in pre-operation surgical planning for intracranial meningiomas resection. Methods Brain computed tomography (CT), magnetic resonance imaging (MRI), and magnetic resonance venography (MRV) were performed on 10 patients with parasagittal and falcine meningiomas located on central groove area; brain CT, MRI and magnetic resonance angiography (MIRA) were performed on 10 patients with anterior skull base meningiomas and 10 patients with sphenoid ridge meningiomas. All these data were transferred to Dextroscope virtual reality system, and reconstructed. Then meningiomas, skull base, brain tissue, drainage vein and cerebral arteries were displayed within the system, and their anatomic relationships were evaluated. Also, the simulation operations were performed. Results For parasagittal and falcine meningiomas, the relationships of tumor with drainage vein and superior sagittal sinus were clearly displayed in the Dextroscope system. For anterior skull base and sphenoid ridge meningiomas, the relationships of tumor with bilateral internal carotid arteries, anterior cerebral arteries, middle cerebral arteries and skull base were vividly displayed within the virtual reality system. Surgical planning and simulation operation of all cases were performed as well. The real operations of all patients were conducted according to the simulation with well outcomes. Conclusions According to the virtual reality planning, neurosurgeons could get more anatomic information about meningioma and its surrounding structures, especially important vessels, and choose the best approach for tumor resection, which would lead to better prognosis for patients.
关 键 词:virtual reality Dextroscope system intracranial meningioma surgical planning
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...