检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工商大学计算机与信息工程学院,杭州310018
出 处:《传感技术学报》2012年第3期313-318,共6页Chinese Journal of Sensors and Actuators
基 金:浙江省自然科学基金项目(Y1110074);浙江省教育厅科研项目(Y201010012);浙江省科技厅重大科技专项和优先主题项目(2008C14100)
摘 要:生物模式识别机理引入人工嗅觉系统将提高其仿生化程度,并被认为是有前途的传感阵列信息处理方法。本文尝试将一种嗅觉神经网络应用到电子鼻检测和识别多种品牌的绿茶气味。通过包含8个MOS型气敏传感器的自制电子鼻仪器,测量了来着不同地方的5种不同品牌的绿茶样品,在传感阵列信号稳态部分提取特征向量,并使用雷达图考察指纹图谱异同,验证传感阵列及特征提取方法的有效性。采用生物相似性学习算法训练该神经网络,考察了样本训练次数和识别率的关系,发现经过4~7次训练,该网络对这5种绿茶的识别率平均值都在97%以上。Introducing some principles of biological pattern recognition into artificial olfaction will produce more biomimetic instrument, and they are also considered as promising sensor array information processing methods. This paper presents an electronic nose based on an olfactory neural network to detect and discriminate green tea with different brands. Data of five brands of green tea from different areas were acquired through a homemade electronic nose apparatus containing eight MOS gas sensors. Feature vectors extracted from steady-state phase of array signals, were plotted on radar charts as fingerprint, to inspect the effectiveness of sensor array arrangement and feature selection method. The olfactory neural network trained by a biologically plausibility learning rule was used to classify those samples. The relationship between training cycles and recognition rate was investigated. The results showed that after 4 -7 training cycles the network could correctly discriminate those green teas with average recognition rate of above 97%.
关 键 词:电子鼻 嗅觉神经网络 绿茶识别 传感器阵列 指纹图谱
分 类 号:TP212.2[自动化与计算机技术—检测技术与自动化装置] TP242.64[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.101