检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学计算机学院,陕西西安710071
出 处:《系统工程与电子技术》2012年第5期1041-1045,共5页Systems Engineering and Electronics
基 金:国家自然科学基金(61070137;60371044);国家自然科学基金重点项目(60933009)资助课题
摘 要:针对小样本集构建稀疏马尔可夫网络计算量大和求解精度不高的问题,提出一种基于高斯噪声模型的迭代噪声消减(iterative noise reduction,INR)算法。该算法首先利用回归误差的高斯特性筛选相关变量,然后通过boosting方法的自回归更新策略逐步改进学习能力,最后采用赤池信息准则(Akaike information criterion,AIC)避免出现过拟合。此外,给出了自回归更新公式,实现了可控的学习错误率并分析了计算复杂度。实验结果表明,INR能有效构建高维稀疏网络,在学习效率和精度方面具有明显优势。To solve the difficulties of high calculation quantity and low precision in constructing sparse Markov network with a small set of samples,an iterative noise reduction(INR) algorithm based on the Gaussian noise model is proposed.The algorithm firstly picks out the related variables through employing statistic test to regression residuals.After that,a learning ability is gradually improved through the autoregressive update strategy similar as boosting method.Finally,Akaike information criterion(AIC) is used to avoid overfit.In addition,the iterative update formula is provided and the error rate controlling is realized.Furthermore,the computational complexity of the proposed algorithm is analyzed.The experimental results show that INR can effectively construct the high dimensional sparse network and has obvious advantages on learning precision and efficiency.
关 键 词:人工智能 迭代噪声消减 网络推理 马尔可夫网络 高斯噪声
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28