检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:常康[1] 丁茂生[2] 薛峰[1] 张军[2] 宋晓芳[1] 项丽[2]
机构地区:[1]国网电力科学研究院,江苏南京210003 [2]宁夏电力公司,宁夏银川750001
出 处:《电力系统保护与控制》2012年第12期19-24,30,共7页Power System Protection and Control
摘 要:随着风电穿透功率的不断提高,研究适用于在线安全稳定预警系统的超短期风电功率预测方法,并将其应用于超短期安全稳定校核功能,对于提高电网安全稳定性、提升电网接纳风电能力具有重要意义。基于ARIMA时间序列模型建立了超短期风电功率预测模型。结合在线系统对超短期风电功率预测算法的要求,讨论了白噪声扰动序列在线计算方法,以及模型对不同工况的适应性。探讨了所提方法在在线安全稳定预警系统中的应用功能。以宁夏电网风电场运行数据为研究对象,分三种工况对比了该方法与持续法预测效果,证明了该方法的有效性。With the growth of wind power penetration rate, the study and application of ultra-short-term wind power forecasting which is suitable for on-line early-warning system is of great importance, which could improve the grids receptiveness, security and stability. Firstly, an ultra-short-term wind power forecasting model is established based on autoregressive integrated moving average (ARIMA) time series model. Secondly, considering the requirements of on-line early-warning system, a technique of on-line computing white noise sequence is discussed. And then the way of improving the adaptability is proposed. Thirdly, the applications of the proposed forecasting method in on-line early-warning system are discussed. Finally, taking Ningxia wind farms operation data as example, a comparison between persistence forecasting method and the proposed method is made in three kinds of operation conditions. And the validity of the proposed method is proved.
关 键 词:ARIMA模型 超短期 风电功率预测 在线 安全稳定校核
分 类 号:TM614[电气工程—电力系统及自动化] TM734
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30