前馈型神经网络新学习算法的研究  

在线阅读下载全文

作  者:杨永洁[1] 张继德[1] 孙桂波[1] 

机构地区:[1]河北联合大学电气工程学院

出  处:《科技信息》2012年第18期141-142,共2页Science & Technology Information

摘  要:前馈神经网络在非线性系统的建模及控制中有着广阔的应用前景,但是该网络的学习算法—向后传播算法(Backpropagation(BP)Algorithm)算法存在一些不足。为了提高多层前馈神经网络的学习效率及稳定性,引入了非线性最小二乘法。通过与其他学习算法的比较,得出结论:其中用差商近似代替导数的Powell法是一种高效、快速的学习方法,其学习速率比带动量项的学习率自适应的BP算法高一个量级,而比Daviden Fletcher Powell(DFP)、BroydenFletcher Goldfarl Shanno(BFGS)等变尺度方法以及其他非线性最小二乘法的稳定性要好得多。

关 键 词:前馈神经网络 学习算法 非线性最小二乘法 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象