运用EO-1 Hyperion数据和单类支持向量机方法提取岩性信息  被引量:6

Lithologic Mapping Using EO-1 Hyperion Data and Extended OCSVM

在线阅读下载全文

作  者:张西雅[1] 徐海卿[1] 李培军[1] 

机构地区:[1]北京大学地球与空间科学学院遥感与地理信息系统研究所,北京100871

出  处:《北京大学学报(自然科学版)》2012年第3期411-418,共8页Acta Scientiarum Naturalium Universitatis Pekinensis

基  金:国家重点基础研究发展计划(2009CB219302)资助

摘  要:将扩展的单类支持向量机方法运用到高光谱岩性识别中,并分析和评价该方法的性能。利用单类支持向量机分别提取各个感兴趣的岩性类别,对于被识别为多个岩性类别的像元,根据该像元与每个单类支持向量机所确定的分类超平面的距离来确定属于哪一类别,这样,利用扩展的单类支持向量机来可提取多个感兴趣的岩性类别。将该方法运用到新疆准噶尔地区的EO-1 Hyperion高光谱数据岩性分类中,并与传统的光谱角制图方法进行比较。结果表明,扩展的单类支持向量机方法的岩性分类精度显著高于光谱角制图方法,是一种新的可用于高光谱数据的岩性分类方法。An extended one-class support vector machine (OCSVM) was applied to lithologic mapping from the EO-1 Hyperion hyperspectral data, and it has been evaluated in terms of classification accuracy. First OCSVM was separately used to extract each lithologic unit of interest. The pixel which was classified to different classes simultaneously was then assigned as the class with smallest distance to the hyperplane. In this way, the extended OCSVM can be used for extracting several lithologic units of interest. The extended OCSVM method was used in lithologic classification from the EO-1 Hyperion hyperspectral data in Junggar area, Xinjiang and compared with the spectral angle mapper (SAM) method. The results showed that the extended OCSVM method outperformed the SAM method in lithologic classification. The extended OCSVM is a useful and effective method for lithologic classification from hyperspectral remote sensing data.

关 键 词:高光谱 单类支持向量机 光谱角制图 岩性分类 

分 类 号:P585[天文地球—岩石学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象