近邻类鉴别分析方法  被引量:1

Neighbor Class Linear Discriminate Analysis

在线阅读下载全文

作  者:王言伟[1] 丁晓青[1] 刘长松[1] 

机构地区:[1]清华大学电子工程系,北京100084

出  处:《模式识别与人工智能》2012年第3期406-410,共5页Pattern Recognition and Artificial Intelligence

基  金:国家自然科学基金重点项目(No.60933010);国家973计划项目(No.2007CB311004)资助

摘  要:提出一种近邻类鉴别分析方法,线性鉴别分析是该方法的一个特例.线性鉴别分析通过最大化类间散度同时最小化类内散度寻找最佳投影,其中类间散度是所有类之间散度的总体平均;而近邻类鉴别分析中类间散度定义为各个类与其k个近邻类之间的平均散度.该方法通过选取适当的近邻类数,能够缓解线性鉴别降维后造成的部分类的重叠.实验结果表明近邻类鉴别分析方法性能稳定且优于传统的线性鉴别分析.A method of neighbor class linear discriminant analysis (NCLDA) is proposed. Linear discriminant analysis (LDA) is a special case of this method. LDA finds the optimal projections by maximum between-class scatter while by minimum within-class scatter. The between-class scatter is an average over divergences among all classes. In NCLDA, between-class scatter is defined as average divergences between one class and its k nearest neighbor classes. By selecting proper numbers of neighbor class, NCLDA alleviates overlaps among classes caused by LDA. The experimental results show that the proposed NCLDA is robust and outperforms LDA.

关 键 词:线性鉴别分析(LDA) 近邻类鉴别分析(NCLDA) 手写汉字识别 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象