检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘凯[1] 李文东[1] 张闻钊[1] 史鹏[1] 任春年[1] 顾永建[1]
出 处:《物理学报》2012年第12期28-34,共7页Acta Physica Sinica
摘 要:受到Lanyon等(Lanyon B P et al 2008 Nature Physics 5 134)利用高维Hilbert空间成功简化Toffoli门的启发,本文将辅助维度应用到普适量子线路中,结合Cosine-Sine Decomposition(CSD),Quantum Shannon Decomposition(QSD)等矩阵分解方法,优化了两比特和三比特普适幺正量子线路,给出了计算n比特普适量子线路复杂度的公式,并利用线性光学和腔QED系统设计了实验方案.结果表明,两比特和三比特量子线路的复杂度已分别接近和优于目前最优结果,且随着比特数的增加,本方案的优势愈加明显.Inspired by Lanyon (B. P. Lanyon et al. 2008 Nature Physics 5 134) successfully simplifying the three-qubit Toffoli gate, we present a novel scheme that optimizes universal quantum logic circuits using assisted higher-dimensional Hilbert space. We construct a more efficient two-qubit circuit and a more effective three-qubit universal quantum circuit by using assisted dimension, CosineSine Decomposition (CSD) and Quantum Shannon Decomposition (QSD). Meanwhile, we present the formula for the complexity of arbitrary n-qubit universal quantum gate. We propose the physical implementation of this scheme by linear optical circuits and cavity- QED. The results show that the two-qubit and three-qubit universal quantum circuits are respectively close and superior to the current optimal scheme in complexity. And with the increase of the number of qubits, the advantage of our scheme will become increasingly prominent.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249