检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学包装工程系,江苏无锡214122 [2]国家轻工业包装制品质量监督检测中心,江苏无锡214122
出 处:《振动与冲击》2012年第11期142-144,共3页Journal of Vibration and Shock
摘 要:以悬挂式弹簧系统为研究对象,建立了矩形脉冲激励下系统非线性无量纲动力学方程,利用龙格-库塔法对系统冲击特性进行数值分析。以系统加速度响应峰值与脉冲激励幅值之比为反映系统在冲击作用下的响应指标,脉冲激励时间、系统悬挂角为变量,构建了系统的三维冲击谱。讨论了系统悬挂角以及系统阻尼等对冲击谱的影响规律。研究表明,系统悬挂角、阻尼等对系统冲击响应峰值影响显著,增加阻尼可使系统加速度响应峰值明显降低。研究结论可为悬挂式弹簧减振系统的设计提供理论依据。The geometric nonlinear dimensionless dynamic equations of a suspension spring system were developed under action of a rectangular pulse, and the numerical analysis of its shock characteristics were conducted using Runge- Kutta method. A new concept of three-dimensional shock response spectra was presented, the ratio of the maximum shock response acceleration of the system to the peak pulse acceleration, the pulse duration and the suspension angle of the system were three basic variables of the three-dimensional shock response spectra. Based on the numerical results, the effects of the suspension angle and the damping ratio of the system on the shock spectra were discussed. It was shown that the effects of the suspension angle and the damping ratio of the system are particularly noticeable, increase in damping can obviously decrease the maximum Shock response acceleration of the system. The proposed method provided a reference for design of a shock absorber with a suspension spring system.
分 类 号:TB485[一般工业技术—包装工程] O328[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.129.118