基于隐马尔科夫模型的P2P流识别技术  被引量:9

Hidden Markov model based P2P flow identification technique

在线阅读下载全文

作  者:许博[1] 陈鸣[1] 魏祥麟[1] 

机构地区:[1]解放军理工大学指挥自动化学院,江苏南京210007

出  处:《通信学报》2012年第6期55-63,共9页Journal on Communications

基  金:国家高技术研究发展计划("863"计划)基金资助项目(2007AA01Z418);江苏省自然科学基金资助项目(BK2009058);国家自然科学基金资助项目(61072043)~~

摘  要:为了实时、准确地识别多种P2P应用流,提出了基于隐马尔科夫模型(HMM,hidden Markov model)的P2P流识别技术。该技术利用分组大小、到达时间间隔和到达顺序等特征构建流识别模型,采用离散型随机变量刻画HMM状态特征;提出了能同时识别多种P2P应用流的架构HMM-FIA,设计了HMM的状态个数选择算法。在校园网中架设可控实验环境,使用HMM-FIA识别多种P2P流,并与已有识别方法进行比较,结果表明采用离散型随机变量能降低模型建立时间,提高识别未知流的实时性和准确性;HMM-FIA能同时识别多种P2P协议产生的分组流,并能较好地适应网络环境变化。To identify various P2P flows accurately in real-time,a hidden Markov model(HMM) based P2P flow identification technique was proposed.This approach made use of packet size,inter-arrival time and arrival order to construct flow identification model,in which discrete random variable was used to depict the characteristics of HMM state.A framework called HMM-FIA was proposed,which could identify various P2P flows simultaneously.Meanwhile,the algorithm for selecting the number of HMM state was designed.In a controllable experimental circumstance in the campus network,HMM-FIA was utilized to identify P2P flows and was compared with other identification methods.The results show that discrete random variable can decrease the model constructing time and improve the time-cost and accuracy in identifying unknown flows,HMM-FIA can correctly identify the packet flows produced by various P2P protocols and it can be adaptive to different network circumstance.

关 键 词:对等方到对等方 有限状态机 流识别 隐马尔科夫模型 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象