检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国地质大学工程学院,武汉430074 [2]长江三峡勘测研究院有限公司,武汉430010 [3]中国地质大学地球物理与空间信息学院,武汉430074
出 处:《路基工程》2012年第3期110-113,共4页Subgrade Engineering
摘 要:灌浆压力是土体灌浆加固的重要参数。基于神经网络非线性映射特性,分析土体灌浆压力主要影响因素,建立符合一般工程判断和决策思维的BP网络预测模型,并引入偏差单元对其结构进行改进,实现了快速收敛,较高精度得出灌浆预测压力的具体数值。预测结果与室内灌浆试验压力对比表明,带偏差单元BP神经网络的土体灌浆压力预测结果具有较高准确性和一定的实用意义。Grouting pressure is an important parameter in soil mass consolidation by grouting. Based on the nonlinear mapping characteristics of neural network, the main factors affecting the grouting pressure are analyzed and the BP network prediction model consistent with general engineering judgment and decision- making thoughts is established. In addition, the structure of the model is improved by introduction of bias element; thus fast convergence is realized and the specific value of grouting pressure estimate with high accuracy is obtained. The comparison between predicted result and measured pressure from indoor grouting test shows that the estimate of the grouting pressure by BP neural network with bias element has high accuracy and certain practical significance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222