检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江农林大学经济管理系,浙江杭州332600 [2]上海财经大学投资系,上海200433
出 处:《河北科技大学学报(社会科学版)》2012年第2期1-7,共7页Journal of Hebei University of Science and Technology:Social Sciences
基 金:国家自然科学基金项目(71103121);浙江省教育厅基金项目(Y201121210);上海市哲学社会科学规划课题(2011EJL002);上海市教委科研创新课题(12YS106)
摘 要:运用R型系统聚类法将我国划分为高、中、低房价地区,通过建立状态空间模型和运用卡尔曼滤波解法,对比分析了历年货币政策变化对区域房价的动态影响。实证结果表明:贷款规模对房价的影响力较大且区域差别显著,而实际利率对房价的影响力较小,也有一定的区域差异。针对我国房地产市场局部过热且高房价有向全国扩散的态势,应该根据货币政策工具对区域房价影响的特点,从以往的以价格手段调控为主,转变为以数量手段调控为主、价格手段为辅,才能使房地产市场调控取得预期效果。By using R Hierarchical cluster to establish State-space Models combined with Kalman Filter solution, this article compared the dynamic influence of monetary policy changes on the high- price, middle-price as well as the low-price areas. The empirical test result shows that scales of loans have more impacts on the housing price, and the impact varies greatly according to different areas. However, the pricing tools such as interest adjustment have less influence, and the regional influence is invisible. Therefore; the macroeconomic control on housing market should make some adjustment according to the influence of monetary policies. It should shift from pricing tools to quantity tools so as to achieve the expected effect.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46