检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨工业大学交通科学与工程学院,哈尔滨150001
出 处:《交通运输系统工程与信息》2012年第3期36-40,共5页Journal of Transportation Systems Engineering and Information Technology
基 金:'十一五'国家科技支撑计划项目(2009BAG13A06)
摘 要:海量动态交通流中,经常出现结伴而行的车辆.特定区域内,当结伴车辆出现的概率较大时,即可将其视为伴随车辆,这类车辆具有相互掩护和团伙作案的重大嫌疑.及早检测和识别伴随车辆,能有效降低道路交通安全系统中的危险因素,对预防和减少与道路有关的治安和刑事案件,也具有十分重要的意义.本文在车牌自动识别数据库基础上,应用数据挖掘技术,提出伴随车辆检测和识别算法,并进行了实地测试.实验结果表明:应用数据挖掘技术对伴随车辆进行分析检测,具有检测效率高、检测误差小、应用范围广的特点,完全可以满足刑侦等部门对伴随嫌疑车辆进一步排查的需要.In massive dynamic traffic flows, it is very common to see the cars moving in a queue. In some scenarios, these cars are regarded as accompanying cars and suspected of gang crime support each other when that condition occurs in a high rate. It is very important to identify the accompanying vehicles as early as possible and to reduce potential risks of road traffic system and to reduce road-related public security cases and criminal cases. Based on the automatic license plate recognition database and data mining technology, this paper proposes a set of algorithms in identifying accompanying cars and a field test is conducted. The results demonstrate the performance of the algorithm with effectiveness, low detection error, wide application and capability for further investigation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104