检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:耿利娜[1] 罗爱芹[1] 傅若农[1] 李静[2]
机构地区:[1]北京理工大学化工与材料学院,北京100081 [2]吉林省中医院,长春130021
出 处:《分析化学》2000年第5期549-553,共5页Chinese Journal of Analytical Chemistry
摘 要:将以误差反向传播为训练算法的前馈式人工神经网络(BP-ANN)首次用于中草药的裂解气相色谱谱图解析。重点考察了如何表征和提取复杂的裂解色谱图中有价值信息,用主成分分析方法处理后输入到参数经优化的神经网络中。实验证明,该方法不仅可以正确识别样品所属种类,而且对于不同实验时间、数据残缺等原因造成的噪音具有优异的抗干扰能力。The potential utility of feed forward artificial neural network using the back propagation algorithm (BP-ANN), in interpreting pyrogram data from traditional Chinese medicine was discussed. We laid stress on how to extract and encode the most meaningful information from pyrogram to use as the input matrix in neural network, such as data representation and preprocessing. After network topology analysis,several parameters of neural network were optimized. The study revealed, that after training, utilizing principal component analysis (PCA) in conjunction with BP-ANN was robust in respect to small variances presented in data, such as noise and distortion.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.180.18