检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京信息工程大学物理与光电工程学院,南京210044
出 处:《南京信息工程大学学报(自然科学版)》2012年第3期266-269,共4页Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基 金:江苏省自然科学基金(BK2008437);江苏省高校自然科学基金(07KJB510066);南京信息工程大学科研基金(90205)
摘 要:提出一种基于视觉注意机制的动态阈值选取方法.首先按人眼视觉注意特点计算各图块的显著性特征值,根据显著性特征值将图像块进行分类,然后利用最大类间方差法和多尺度的自适应阈值方法分别实现不同灰度特性区域的图像动态分割.实验结果表明:该方法能够实现图像多阈值的自动选取,不受照明条件的影响,能够获得满意的二值分割效果.A dynamic self-adaptive threshold segmentation algorithm based on human visual attention theory and maximum between-class variance method is proposed. First of all, the pending image is divided into lots of equal- sized square blocks, then the feature value of every block is calculated respectively according to multi-scale visual attention. Secondly, all the image blocks are divided into two types by classification algorithm based on feature value of visual attention. Finally, blocks with different types are binarized by maximum variance algorithm and multi-scale adaptive threshold algorithm respectively. The experimental results show that:compared with the one dimension max- imum variance and two dimension maximum variance segmentation methods, this new proposed method can elimi- nate the disturbance of the uneven lighting and background noises, thus achieve superior segmented results for une- ven lighting and poor quality document image binarization. These experimental results testify the validity and practi- cal value of the proposed method.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185