检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李沛[1,2] 王式功[1] 尚可政[1] 李邦东[1] 朱海峰[1] 曾淑玲[1] 郝天依[1]
机构地区:[1]兰州大学大气科学学院甘肃省干旱气候变化与减灾重点实验室 [2]中国人民解放军93534部队58分队
出 处:《兰州大学学报(自然科学版)》2012年第3期52-57,共6页Journal of Lanzhou University(Natural Sciences)
基 金:国家公益性行业专项项目(GYHY201106034;GYHY201006023);国家科技支撑计划项目(2009BAC53B02)
摘 要:在研究了北京市近10年来城市能见度变化特征及低能见度发生的主要影响因素的基础上,利用北京市气象站观测资料筛选出主要的预报因子,使用学习向量量化算法对样本进行分类,再利用列文夸特算法逐级建立预报模型,并进行预报试验.结果表明神经网络逐级分类模型具有良好的预报能力,其关键在于模型的识别分类能力,试验得到分类准确率达到87.0%,采用列文夸特优化算法的逐级分类模型较统计回归预报残差平方和下降了57.1%;低能见度、中等能见度、高能见度预报准确率分别为60.0%,68.2%,79.3%,均高于统计回归预报方法(12.5%,41.7%,52.4%).Based on the study of visibility variation and the main causes for low visibility in Beijing during the past 10 years, the appropriate predictors were selected from Beijing observation station in this study. The selected samples were classified through learning vector quantization (LVQ) artifical neural network, and then Levenberg-Marquardt (L-M) optimization scheme was used to establish a prediction model to conduct the forecasting test. The results indicate that the increase of the accuracy of L-M optimization model lies in its ability of identification and classification, with the accuracy rate of model classification being 87.0% in this test. The sum squared resin was decreased by 57.1% through the use of L-M optimization model, in contrast with statistical regression models. The prediction accuracy of low-value visibility, moderate-value visibility and high-value visibility was 60.0%, 68.2% and 79.3% respectively, much higher than that produced by the statistical model (12.5%, 41.7%, 52.4%).
关 键 词:低能见度 人工神经网络 逐级分类建模 预报 北京地区
分 类 号:P456.9[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145