检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴国洋[1]
机构地区:[1]攀枝花学院,四川攀枝花617100
出 处:《机械传动》2012年第7期82-85,95,共5页Journal of Mechanical Transmission
基 金:国家科技支撑计划基金资助项目(2006BAA01A11)
摘 要:提出一种基于正态反高斯分布模型局部逼近小波系数的降噪算法。该算法以db5小波作为振动信号的分解小波,对噪声信号进行分解。对于分解过程中包含大量噪声的小波系数,利用具有良好细节逼近性能的正态反高斯分布构造先验模型,在先验模型的基础上,运用贝叶斯最大后验概率估计从含噪的小波系数中估计出真实的小波系数。在后验估计的过程中,对于估计模型中的关键系数采用粒子群算法进行优化选取。利用估计的小波系数来重构信号,得到降噪后的信号。通过仿真实验和实际轴承的故障信号对该方法进行了验证,结果表明,该方法具有较好的降噪效果,可以有效的消除信号的噪声。A locally adaptive wavelet de - noising method based on normal inverse Gaussian modal is proposed. Firstly, the db5 wavelet is used to decompose the signal. For those wavelet coefficients which contain a lot of noise, the normal inverse Gaussian modal with good approximation property is constructed as the prior distribution model of those coefficients, on the basis of the model, Bayesian maximum a posteriori estimator is used to estimate the noisy wavelet coefficients and got the realistic wavelet coefficients. Then in the process of posteriori estimation, in order to get the best posteriori approximation model, the particle swarm optimization algorithm is used to select the key coeffi- cient of the model. Finally, new wavelet coefficients are used for the reconstruction of the de - noised signal, and the de - noised signal is gotten. The algorithm is analyzed by simulation and bearing fault signal respectively. Analysis re- suits show that this algorithm has good noise reduction effect, and can efficiently reduce the noise.
关 键 词:db5小波 正态反高斯模型 最大后验概率估计 粒子群算法 消噪
分 类 号:TN911.4[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249