自适应分块颜色直方图的MeanShift跟踪算法  被引量:15

MeanShift Tracking Algorithm with Adaptive Block Color Histogram

在线阅读下载全文

作  者:杜凯[1,2] 巨永锋[1,2] 靳引利[1,2] 李刚[1,2] 

机构地区:[1]长安大学电子与控制工程学院,西安710064 [2]长安大学交通系统工程研究所,西安710064

出  处:《武汉理工大学学报》2012年第6期140-144,共5页Journal of Wuhan University of Technology

基  金:国家自然科学基金(60806043);中央高校基本科研业务费专项资金(CHD2010ZY012);西安市科学技术局工业应用技术研发项目(CXY1127)

摘  要:传统颜色直方图的MeanShift(MS)算法只考虑了目标颜色的统计信息,不包含目标的空间信息,当目标颜色与背景颜色相近时,容易导致不准确跟踪或跟踪丢失。针对该问题,提出了一种自适应空间颜色直方图的MeanShift跟踪算法。该算法根据目标对象的最新外接矩形尺寸,确定对象分块方法,根据各块的Bhattacharyya系数值,确定各块的权重系数。其中,自适应分块的颜色直方图包含了自适应分块方法和目标的空间信息;加权Bhattacharyya系数考虑到不同块对整体相似度的不同影响。实验表明,文中算法采用自适应分块方法和加权Bhattacharyya系数法,比传统的MS算法和固定分块的MS算法具有更好的跟踪性能。Traditional color histogram MeanShift (MS) algorithm only considered object's color statistical information, and didn't contain object' s space information, so when the object color closed to the background color, the traditional MS algorithm easily caused object's tracking inaccurately or lost. Aimmed at this issue, a MeanShift tracking algorithm with adaptive block color histogram was proposed in this article, which determined block method by the size of the lastest enclosing rectangle and determined their weight coefficient by the Bhattacharyya coefficient of each block. Among them, the adaptive block color histogram contained adaptive block method and object' s spatial information, and the weighted Bhattacharyya coefficient considered different block's influence to the overall similarity. Experimental results show that the proposed method which uses the adaptive block method and weighted Bhattachcharyya coefficient method is better than the traditional MS algorithm and fixed block MS algorithm in tracking performance.

关 键 词:目标跟踪 MEANSHIFT 自适应分块颜色直方图 BHATTACHARYYA系数 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象