基于受限玻尔兹曼机的中文文档分类  被引量:3

在线阅读下载全文

作  者:杨莹[1] 吴诚炜[1] 胡苏[1] 

机构地区:[1]中国电子科技集团公司第七研究所,广东广州510310

出  处:《科技创新导报》2012年第16期35-36,共2页Science and Technology Innovation Herald

摘  要:最近,许多不同类型的人工神经网络(Artificial Neural Network)已经应用于文档分类,并且得到了较好的结果。但是,大多数的模型仅使用了少量特征作为输入,因此可能没有足够的信息来对文档进行准确分类。如果输入更多的特征,将可能发生所谓的维数灾难,导致模型的训练时间大幅度增加,其泛化能力也可能会恶化。因此,在原始高维的输入特征中抽取出高度可区分的低维特征,并将其作为相应模型的输入对改善模型的泛化性能会有很大的帮助。受限玻尔兹曼机(Restricted Boltzmann Machine)是一种新型的机器学习工具,因为其强大的学习能力,受限玻尔兹曼机已经被广泛应用于各种机器学习问题。在本文中,我们使用受限玻尔兹曼机从原始输入特征中抽取低维高度可区分的低维特征,并且使用支持向量机(Support Vector Machine)作为回归模型。

关 键 词:文档分类 受限玻尔兹曼机 低维特征 支持向量机 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象