检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]宁夏大学数学计算机学院,宁夏银川750021 [2]中国科学院地质与地球物理研究所,北京100029
出 处:《武汉大学学报(理学版)》2012年第3期221-228,共8页Journal of Wuhan University:Natural Science Edition
基 金:国家自然科学基金项目(41174047;40874024);国家重点基础研究发展计划(973计划)(2007CB209603)资助项目
摘 要:基于分部的Runge-Kutta离散形式,引入了相位误差最小的思想,给出了一种新的三级三阶非力梯度辛积分算法,并通过数值试验与经典的Ruth、McLachlan&Atela以及Iwatsu的三级三阶非力梯度辛算法从稳定性、长时程、保结构性等方面进行了对比.结果显示新推导的三级三阶非力梯度辛算法稳定性较好、长时程运算误差小,表明该算法具有好的保结构性和较强的长时程跟踪能力.进一步通过数值试验与力梯度辛算法比较,也显示出该算法的有效性和具有较高的精度.In this paper, a new solution to the three-stage third-order non-gradient symplectic integration algorithm is given based on the minimum phase error principle and the partitioned Runge-Kutta form. Several other nongradient methods, such as Ruth's, McLachlan&Atela's and Iwatsu's symplectic integration algorithm of three-stage third-order, are employed to compare the performance with the present algorithm by numerical experiments. The numerical results show that the present algorithm is good at stability, and much superior to the other methods in the features of long-time computing ability. The further numerical experiments is used to compare the algorithm with above non-gradient symplectic methods and some force-gradient symplectic methods, the results also show that the algorithm is effective with high accuracy. These appealing features of the algorithm would make it effective to have the ability of structure-preserving and long-time tracing.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.112.77