星扇轮联图的邻点可约边染色  被引量:4

Adjacent Reducible Edge Cloring of Star Fan Wheel of Join-Graphs

在线阅读下载全文

作  者:张园萍[1] 强会英[1] 孙亮萍[1] 

机构地区:[1]兰州交通大学数理与软件工程学院,甘肃兰州730070

出  处:《数学的实践与认识》2012年第13期207-213,共7页Mathematics in Practice and Theory

基  金:甘肃省自然科学基金[1010RJZA076]

摘  要:对简单图G(V,E),若存在自然数κ(1≤κ≤Δ(G))和映射f:E(G)→{1,2,…,κ}使得对任意相邻两点u,v∈V(G),uv∈E(G),当d(u)=d(v)时,有C(u)=C(u),则f为G的κ-邻点可约边染色(简记为κ-AVREC of G),而x′_(aur)(G)=max{κ|κ-AVREC of G}称为G的邻点可约边染色数.其中C(u)={f(uv)|uv∈E(G)}.证明了联图在若干情况下的邻点可约边染色定理,得到了S_n+S_n,F_n+F_n,W_n+W_n,S_n+F_n,S_n+W_n和F_n+W_n的邻点可约边色数.Let G be a simple graph, k is a positive integer, f is a mapping from E(G) to {1, 2,…, k}, such that uv, uw ∈ E(G), d(u) = d(v);and c(u) = c(v), then f is callled the k adjacent reducible edge aloring of G. Which is abbreviated by K-AVREC of G, and X^1avr(G) = max{k|k - AVRECofG} is called the adjacent reducible edge chromatic number of G. In this paper, we have proved theorems of adjacent reducible coloring of some circumstances, and adjacent reducble edge chromatic number of some join-graphs (Sn + Sn,Fn + Fn, Wn+Wn, Sn+ Fn, Sin+ Wn, Fn + Wn) is obtained.

关 键 词:联图 邻点可约边染色 邻点可约边色数 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象