检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州交通大学数理与软件工程学院,甘肃兰州730070
出 处:《数学的实践与认识》2012年第13期207-213,共7页Mathematics in Practice and Theory
基 金:甘肃省自然科学基金[1010RJZA076]
摘 要:对简单图G(V,E),若存在自然数κ(1≤κ≤Δ(G))和映射f:E(G)→{1,2,…,κ}使得对任意相邻两点u,v∈V(G),uv∈E(G),当d(u)=d(v)时,有C(u)=C(u),则f为G的κ-邻点可约边染色(简记为κ-AVREC of G),而x′_(aur)(G)=max{κ|κ-AVREC of G}称为G的邻点可约边染色数.其中C(u)={f(uv)|uv∈E(G)}.证明了联图在若干情况下的邻点可约边染色定理,得到了S_n+S_n,F_n+F_n,W_n+W_n,S_n+F_n,S_n+W_n和F_n+W_n的邻点可约边色数.Let G be a simple graph, k is a positive integer, f is a mapping from E(G) to {1, 2,…, k}, such that uv, uw ∈ E(G), d(u) = d(v);and c(u) = c(v), then f is callled the k adjacent reducible edge aloring of G. Which is abbreviated by K-AVREC of G, and X^1avr(G) = max{k|k - AVRECofG} is called the adjacent reducible edge chromatic number of G. In this paper, we have proved theorems of adjacent reducible coloring of some circumstances, and adjacent reducble edge chromatic number of some join-graphs (Sn + Sn,Fn + Fn, Wn+Wn, Sn+ Fn, Sin+ Wn, Fn + Wn) is obtained.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.66