检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学电子装备结构设计教育部重点实验室,西安710071
出 处:《力学学报》2012年第4期802-806,共5页Chinese Journal of Theoretical and Applied Mechanics
基 金:国家自然科学基金(50905134);中央高校基本科研资金(JY10000904012)资助项目~~
摘 要:基于Lagrange方程建立了含随机参数的多体系统的动力学模型,利用广义坐标分离法将随机微分代数方程转化为随机纯微分方程,利用Newmark法进行数值解算.应用随机因子法求解系统随机响应的数字特征,获得统计意义下的解.以旋转杆滑块系统为例,考虑系统中载荷、物理和几何参数的随机性,通过与MonteCarlo法结果的对比验证了文中方法的正确性和有效性.计算结果表明,部分随机参数的分散性对多体系统动力响应的影响不可忽略,利用随机参数的动力学模型将能客观地反映出系统的动力学行为.Dynamic analysis of multibody systems with probabilistic parameters was presented. Dynamic modeling of multibody systems was obtained by Lagrange's method. The probabilistic differential algebraic equations were transformed into pure probabilistic differential equations by generalized coordinate partitioning method. The Newmark step-by-step integration method was used to calculate the results. Using the method of random factor method, the numerical characteristics of the system response were derived, and the results were expressed in statistic view. As an illustrating example, dynamic modeling of a rotating bar and sliding block system considering the probabilistic of load, geometric and physical parameters was presented. Compared with the result of Monte-Carlo numerical simulation method, the accuracy and efficiency of the method are verified. The results illustrate that the probabilistic parameters affect the dynamic response of the multibody system and the dynamic modeling with probabilistic parameters can objectively reflect the dynamic behavior of the objective systems.
关 键 词:随机参数 多体系统 动力学 LAGRANGE方程 随机因子法
分 类 号:O313.7[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.157.158