检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李彪[1,2] 唐有绮[2] 丁虎[2] 陈立群[2,3]
机构地区:[1]上海卫星工程研究所,上海200240 [2]上海大学上海市应用数学和力学研究所,上海200072 [3]上海大学力学系,上海200444
出 处:《振动与冲击》2012年第13期142-146,共5页Journal of Vibration and Shock
基 金:国家杰出青年科学基金(10725209);国家自然科学基金(10932006;90816001);上海市优秀学科带头人计划(09XD1401700);上海市重点学科建设项目(S30106);高等学校博士学科点专项科研基金(20093108110005)
摘 要:研究轴向运动黏弹性Timoshenko梁横向非线性强受迫振动的稳态响应。由广义Hamilton变分原理推导出轴向运动黏弹性Timoshenko梁横向振动的控制方程及相应的边界条件。模型中考虑剪切模量、转动惯量对梁的影响。黏弹性本构关系中运用Kelvin模型并引入物质时间导数。对控制方程施用直接多尺度法,建立强受迫共振的可解性条件,得到稳态响应振幅与激励频率关系曲线。应用Routh-Hurwitz判据判断稳态响应振幅的稳定性。利用数值结果给出不同参数下,如非线性系数、激励振幅与黏弹性阻尼等对稳态幅频响应及稳定性影响。Nonlinear vibrations of axially moving viscoelastic Timoshenko beams under strong external excitations were investigated. The governing partial-differential equations were derived according to the extended Hamilton's principle. The effects of shear deformation and rotary inertia were taken into account. The beam material obeys the Kelvin model in which the material derivative was taken part in the viscoelastic constitution relation instead of the simple partial time derivative. The method of multiple scales was applied to obtain the steady state response and establish the solvability conditions. The stability boundaries were formulated analytically via Routh-Hurwitz criterion. Some numerical examples were presented to demonstrate the effects of related parameters on the response.
关 键 词:轴向运动Timoshenko梁 黏弹性 受迫共振 稳定性 多尺度法
分 类 号:O326[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.201.103