检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈燕红[1] 张太红[1] 冯向萍[1] 白涛[1] 马健[1]
机构地区:[1]新疆农业大学计算机与信息工程学院,乌鲁木齐830052
出 处:《新疆农业大学学报》2012年第3期253-258,共6页Journal of Xinjiang Agricultural University
基 金:新疆维吾尔自治区科技攻关项目(200931103)
摘 要:为了提高针对大规模农业信息的语义检索性能,提出一种基于改进的随机索引语义空间和潜在语义空间的农业信息检索模型(IRI&LSA)。利用120万张中文网页和2 000张分为4类的小规模中文农业网页,对IRI&LSA和两种分别基于单向量兰克泽斯算法(LAS2)和半离散矩阵分解算法(SDD)的常用潜在语义检索模型(LSA-LAS2和LSA-SDD)进行了对比实验。结果表明,IRI&LSA检索结果的平均F1值可达83%,明显高于LSA-LAS2(71%)和LSA-SDD(64%);IRI&LSA的检索速度分别是LSA-LAS2和LSA-SDD的3.6倍和4.9倍。研究结果表明,IRI&LSA适合应用于较大规模农业信息检索。In order to improve semantic retrieval function of massive agricultural information, an agricul- tural information search modle (IRI&LSA) was proposed,based on improved radom index semantic space and latent sematic space. The contrast experiments were conducted between IRIg&LSA and two commonly used latent semantic models (LSA-LAS2 and LSA-SDD) by using 1.2 million Chinese web pages and 2 000 Chinese agricultural web pages that were divided into four categories,based on single-vector lanczos algo- rithm (LAS2) and semi-discrete matrix decomposition algorithm (SDD) respectively. These results showed that the average F1 value of search results of IRI&LSA reached 830//00 that was significantly higher than LSA-LAS2(71%) and LSA-SDD (64 %); retrieval speed of IRI&LSA was LSA-LAS2's 3.6 times and LSA-SDD's 4.9 times. Experimental results showed that IRIgaLSA was suitable for massive agricul- tural information retrieval.
关 键 词:农业信息检索 随机索引 潜在语义分析 IRI&LSA
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229