检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谌先敢[1,2] 刘娟[1] 高智勇[2] 刘海华[2]
机构地区:[1]武汉大学计算机学院,武汉430072 [2]中南民族大学生物医学工程学院,武汉430074
出 处:《自动化学报》2012年第8期1380-1384,共5页Acta Automatica Sinica
基 金:国家自然科学基金(60972158)资助~~
摘 要:为了从现实环境下识别出人体动作,本文研究了从无约束视频中提取特征表征人体动作的问题.首先,在无约束的视频上使用形态学梯度操作消除部分背景,获得人体的轮廓形状;其次,提取某一段视频上每一帧形状的边缘特征,累积到一幅图像中,称之为累积边缘图像(Accumulative edge image,AEI);然后,在该累积边缘图像上计算基于网格的方向梯度直方图(Histograms of orientation gradients,HOG),形成特征向量表征人体的动作,送入分类器进行分类.YouTube数据集上的实验结果表明,本文的方法比其他方法更加有效.The problem of extracting feature from uncon- strained videos for representing human actions has been investi- gated in order to recognize human actions in complex environ- ment in this paper. Firstly, morphological gradient was used to eliminate most background information. Then, edge of shape was extracted and accumulated to a frame, which was named accumulative edge image (AEI). Grid-based histograms of ori- entation gradients (HOG) were calculated and formed a fea- ture vector that captured the characteristic of human actions in this video sequence. Using support vector machine (SVM), the method was tested on the YouTube action dataset. The obtained impressive results showed that this method was more effective than other methods in YouTube action dataset.
关 键 词:动作识别 累积边缘图像 方向梯度直方图 支持向量机
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222