基于广义椭球基函数模糊神经网络的油轮转向动态响应模型(英文)  被引量:1

Dynamical response model for tanker steering using GEBF based fuzzyneural networks

在线阅读下载全文

作  者:王宁[1] 王丹[1] 李铁山[2] 

机构地区:[1]大连海事大学轮机工程学院,大连116026 [2]大连海事大学航海学院,大连116026

出  处:《中国科学技术大学学报》2012年第9期705-713,共9页JUSTC

基  金:Supported by the National Natural Science Foundation(NNSF) of China(51009017,61074017,51179019);Applied Basic Research Funds from Ministry of Transport of the People's Republic of China(2012-329-225-060);Fundamental Research Funds for the Central Universities of China(2009QN025,2011JC002)

摘  要:基于广义椭球基函数模糊神经网络(GEBF-FNN)算法,提出一种新颖的油轮转向动态响应模型.通过事先建立好的一组油轮操纵非线性微分方程获得训练数据,GEBF-FNN算法用于在线辨识Nomoto型油轮转向响应模型的参数K和T.具体地,GEBF-FNN模型从没有任何模糊规则开始,基于规则生长准则和参数估计方法,在线生成模糊规则,从而学习出由一组模糊规则构成的具有高精度和精简系统结构的油轮转向动态响应模型.为验证该动态响应模型的有效性,针对典型的Z形操纵进行仿真研究,并进行广泛的比较研究,仿真结果显示基于GEBF-FNN算法的油轮动态响应模型具有理想的逼近和预测性能.A novel dynamical response model is proposed for tanker steering by employing the promising generalized ellipsoidal basis function based fuzzy neural network (GEBF-FNN) algorithm. Based on a group of well established nonlinear differential equations for tanker maneuvering dynamics, training data samples are generated for the GEBF-FNN method to online identify the K and T parameters of the tanker response model in the form of Nomoto steering model. The GEBF-FNN model starts with zero fuzzy rules and online recruits efficient fuzzy rules via rule node generation criteria and parameter estimation. As a consequence, it results in a dynamical response model for tanker steering with high accuracy and transparent structures consisting of a group of fuzzy rules. In order to demonstrate that the proposed response model is effective, simulation studies are conducted on typical zig-zag maneuvers. Moreover, comprehensive comparisons are carefully presented. Simulation results indicate that the GEBF-FNN based response model can achieve promising performance in terms of approximation and prediction.

关 键 词:油轮转向 响应模型 模糊神经网络 广义椭球基函数 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象