检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国石油大学(华东)信息与控制工程学院,青岛266580 [2]中海油研究总院,北京100027 [3]中国石化胜利油田胜利采油厂,东营257051
出 处:《仪器仪表学报》2012年第7期1527-1532,共6页Chinese Journal of Scientific Instrument
基 金:"十二.五"国家科技重大专项(2011ZX05024-002-009)资助项目
摘 要:特征参数的选择与提取是潜油电泵偏磨诊断至关重要的一步。对潜油电泵偏磨和碰磨过程作了力学分析,证明了利用加速度信号实现偏磨诊断的可行性。据小波变换和功率谱参数的特点以及主成分分析的优点,提出潜油电泵偏磨诊断的特征参数选择和提取方法。对加速度信号使用‘bior1.5’小波先作3层小波分解,然后逐层求取3层细节系数和第3层近似系数的功率谱系数,最后对这4维功率谱系数求取1维主成分,得到了4个代表一个样本的特征参数。该参数消除了小波分解时造成的相邻尺度的相关性,并保留了样本的本质信息和主要信息。以支持向量机作为分类器,5次交叉验证平均正确识别率高达91%,高于小波系数的功率谱系数最大值、小波系数主成分等参数。Feature parameter selection and extraction is the crucial step to diagnose electric submersible pump (ESP) partial friction. In this paper, the mechanical analysis of the ESP partial friction and collision friction is carried out, which proves the feasibility of diagnosing ESP partial friction with acceleration signal. According to the characteris- tics of wavelet transform and power spectrum parameters and the advantage of principal component analysis (PCA) , a feature parameter selection and extraction method of ESP partial friction is proposed. Firstly, the acceleration signal is decomposed to 3 layers with ' biorl. 5' wavelet. Then, the power spectrum coefficients of 3 layer detailed co- efficients and the 3rd layer approximation coefficients are calculated for each layer. Lastly, 1 dimension principal components of the 4 dimension power spectrum coefficients are calculated, all the 4 parameters are employed as the features of the sample. These parameters eliminate the correlation in adjacent scales after wavelet decomposition, and retain the essential characteristics and main information of the sample. Taking support vector machine (SVM) as the classifier, the average recognition rate of 5 cross validations is as high as 91% . The results show that these parameters give better performance than the power spectrum maximum values of wavelet coefficients, principal components of wavelet coefficients and other parameters.
分 类 号:TP206[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188