检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]沈阳航空航天大学航空航天工程学部(院),沈阳110136
出 处:《沈阳航空航天大学学报》2012年第3期84-88,共5页Journal of Shenyang Aerospace University
摘 要:航空发动机的磨损机理十分复杂,且受到诸多不确定因素影响,单一预测模型难以对其变化趋势进行有效预测。针对该问题提出了一种BP网络与改进灰色模型相融合的组合预测模型,并引入混沌理论的C-C方法确定BP网络的嵌入参数和时间延时。仿真结果显示,该组合模型相比单一的神经网络模型和灰色模型精度更高,更客观地反映出发动机滑油中金属含量的变化趋势,可为科学制定发动机维修决策提供重要依据。The wear mechanism of aero-engine is complex and affected by many complicated factors, there- fore the single model is difficult to forecast the trend effectively. To solve this problem, a combined fore- casting model of improved grey model and neural network is proposed in this paper, in addition, phase space reconstruction is carded out by C-C method to determine the input samples and output samples of the BP network. Results show that the combined model bears higher prediction accuracy than the single model and reflects more objectively the metal content in engine oil. The method is of significance for engine main- tenance decision.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249