检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈志坚[1] 孟建熠[1] 严晓浪[1] 沙子岩[1]
机构地区:[1]浙江大学超大规模集成电路设计研究所,浙江杭州310027
出 处:《电子学报》2012年第7期1476-1480,共5页Acta Electronica Sinica
摘 要:针对动态可重构处理器的配置信息加载延时,提出了一种基于神经网络的可扩展的重构指令预取机制.增加感受器的历史指令信息,并结合感受器权重构建新型的感受器模型,通过权重与历史指令信息的协同训练学习重构指令调用规律.在处理器运行过程中,提前完成对后续重构指令的预测及配置信息的预取,隐藏指令重构成本.进一步提出了本方法的可扩展实现框架,神经网络的学习结果作为重构指令的关联信息,被移至内存并分布式存储.在重构指令预取时,完成对神经网络学习信息的加载.实验结果表明,该方法对重构指令的预测准确率达91%,综合性能平均提升40%.Reconfigumble processor suffers a severely performance loss from reconfiguration overhead. A NN(neural network algorithm) based configuration prefetching algorithm was proposed in this paper to reduce the overhead. Not only the receptor weight but also the history RFUOP ID constructs an advanced receptor model. The neural network studies the RFUOP trace through coUaborative training of receptor weight and history RFUOP ID. With the learning result, the neural network predicts next RFUOPs and completes configuration prefetching, overlapping the configuration loading with the computation on the host processor. Further- more, an extensible architecture for neural network storage was proposed. As a component of RFUOP, reception information is locat- ed on off-chip memory and linked to corresponding configuration field. Once configuration was prefetched, neuron information was loaded and computed for next prediction. Experiments show that the NN-based prefetching algorithm can reach 91% prediction ac- curacy, while gaining performance improving by 40% on average.
关 键 词:可重构处理器 配置信息预取 改进神经网络算法 可扩展存储架构
分 类 号:TN302[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222