检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院生态环境研究中心城市与区域生态国家重点实验室 [2]中国科学院研究生院 [3]中国科学院烟台海岸带研究所
出 处:《北京林业大学学报》2012年第4期120-125,共6页Journal of Beijing Forestry University
基 金:"十一五"国家科技支撑计划项目(2006BAC01A13)
摘 要:通过K-means和等级聚类方法将黄河三角洲227个草本样方中的20个常见物种进行了聚类,用Kendall's方法对组内物种相关性及显著性进行了分析;将通过显著性检验后物种间距离与物种生长微环境(土壤水分、土壤盐分)、生境、物种所属分布区、物种分类距离、生活型及繁殖方式的相关性进行了分析。所有物种被划分为8个同资源种团和17个亚种团。同资源种团与土壤水分、土壤盐分和生境都显著相关;与生活型、繁殖方式、分类距离和分布区相关性不显著。研究结果表明:数量分类方法所划分的一组物种,在统计上并不一定是显著相关。黄河三角洲地区经过显著性检验后的同资源种团,能代表物种所属的微环境,一定程度上能代表其生境。The study was conducted in the Yellow River Delta(YRD).In total,20 herb species at 227 sites were used for further numerical analysis.K-means and hierarchical cluster analysis were applied to classify species into guilds.To statistically determine guild structure without arbitrary fusion criteria,Kendall’s concordance coefficient was employed to analyze the data matrices.The correlations between guilds and abiotic environment (soil moisture and soil salinity),habitat,floristic characteristics,taxonomic distinctness,life history and seed history were analyzed.We found eight main guilds,which were subdivided into a total of 17 guilds.These guilds were corresponded largely to soil moisture,soil salinity and habitat.The life history,seed biology,taxonomic distance and floristic characteristics of species were poorly associated with the guilds.Our results suggest that species in the same group,which were classified by numeric classification methods,might not significantly relate to each other.Guilds can represent the abiotic environment and habitat.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222