检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:HUANG ChongHui HUANG ZhaoYong
机构地区:[1]School of Mathematics and Physics, University of South China, Hengyang 421001, China [2]Department of Mathematics, Nanjing University, Nanjing 210093, China
出 处:《Science China Mathematics》2012年第8期1647-1654,共8页中国科学:数学(英文版)
基 金:supported by the Specialized Research Fund for the Doctoral Pro-gram of Higher Education(Grant No.20100091110034);National Natural Science Foundation of China(Grant Nos.11171142,11126169,11101217);Natural Science Foundation of Jiangsu Province of China(Grant Nos.BK2010047,BK2010007);the Scientific Research Fund of Hunan Provincial Education Department(Grant No.10C1143);a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
摘 要:Let R be a left and right Noetherian ring and n, k be any non-negative integers. R is said to satisfy the Auslander-type condition Gn(k) if the right fiat dimension of the (i + 1)-th term in a minimal injective resolution of RR is at most i + k for any 0 ≤ i ≤ n - 1. In this paper, we prove that R is Gn(k) if and only if so is a lower triangular matrix ring of any degree t over R.Let R be a left and right Noetherian ring and n,k be any non-negative integers.R is said to satisfy the Auslander-type condition G n (k) if the right flat dimension of the (i + 1)-th term in a minimal injective resolution of RR is at most i + k for any 0 i n 1.In this paper,we prove that R is Gn (k) if and only if so is a lower triangular matrix ring of any degree t over R.
关 键 词:Auslander-type condition triangular matrix rings fiat dimension minimal injective resolutions mlnlm^l A.t r^nlllti^n~
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117