检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]郑州轻工业学院机电工程学院,河南郑州450002
出 处:《郑州轻工业学院学报(自然科学版)》2012年第4期30-32,共3页Journal of Zhengzhou University of Light Industry:Natural Science
基 金:河南省科技攻关计划项目(122102210122)
摘 要:提出基于矢功率谱和D-S证据理论分层融合的旋转机械故障诊断方法,该方法把转子的2个截面信息分别以矢功率谱进行数据层融合,提取矢功率谱的特征输入到径向基概率神经网络分类器进行故障识别,最后把两截面诊断结果输入D-S证据理论融合中心进行决策层融合.实验结果表明,该方法可降低故障诊断的不确定性,并提高故障决策准确率.A rotating machinery fault diagnosis method based on fusing vector power spectrum and D-S evi- dence theory was presented. The method was that two-section information was fused respectively in data lay- er by vector power spectrum, and then the characteristics which were extracted from the vector power spec- trum were input to the basis probabilistic neural network classifier for fault identification, and finally, the two-section diagnosis results were entered into D-S evidence theory for decision level fusion. The experi- ment results showed that the method reduces the diagnostic uncertainty and had high correct recognition rate.
关 键 词:旋转机械故障诊断 矢功率谱 D—S证据理论 数据融合
分 类 号:TH165.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222