离群样本划分的半监督模糊学习策略  

Semi-supervised fuzzy learning strategy by using a way of partitioning the outlier instances

在线阅读下载全文

作  者:宋晓宁[1,2,3] 杨静宇[3] 杨习贝[1,2] 

机构地区:[1]江苏科技大学计算机科学与工程学院,镇江212003 [2]江苏尚博信息科技有限公司,博士后工作站,无锡214072 [3]南京理工大学计算机科学与技术学院,南京210094

出  处:《中国图象图形学报》2012年第8期971-978,共8页Journal of Image and Graphics

基  金:国家自然科学基金项目(60632050,61100116);江苏省自然科学基金项目(BK2011492);中国博士后科学基金项目(2011M500926);江苏省博士后科学基金项目(1102063C);江苏省高校自然科学基金项目(10KJB520006)

摘  要:建立一种离群样本划分的半监督模糊学习算法模型。首先,提出一种基于Hopfield参数估计的松弛条件模糊鉴别分析算法,重新定义每一个样本的隶属度,并在特征抽取的过程中,根据隶属度对散布矩阵的定义所做的贡献获得每个样本相应的类别信息,由此获得普通样本分类信息。其次,根据样本隶属度的分布信息划分出离群样本空间,将普通样本分类结果作为离群样本聚类的先验类属信息,并对该空间样本提出一种新的半监督模糊学习策略进行动态聚类。该算法同时具备了监督学习和无监督学习方法的优势,克服了传统聚类缺乏类过程知识的缺点,可以有效地解决特征空间中特殊样本的分类问题。性能分析表明,该方法优于单一的特征抽取方法,在NUST603、ORL、XM2VTS和FERET人脸数据库上的识别性能均得到有效提高。In this paper, a semi-supervised fuzzy learning algorithm based on the partitioning of the outlier feature space is presented. First, a reformative fuzzy LDA algorithm using a relaxed normalized condition is proposed to achieve the distri-bution information of each sample represented by a fuzzy membership degree, which is incorporated into the redefinition of the scatter matrices. Moreover, we approach the problem of parameter estimation by considering the formulation of the Hopfield neural network. Using this method, the first key step of the fuzzy classification is addressed. Second, considering the negative influences from the outlier instances, we separate the outliers from the whole feature space by means of the dis- tribution information of each sample. The strength of the technique is that it successfully uses the improved fuzzy supervised algorithm as a feature extraction tool, while quantifying those factors that exert influence ons the outlier class assignment, by means of the fuzzy semi-supervised method. Extensive experimental studies conducted on the NUST603, ORL, XM2VTS and FERET face image databases show that the effectiveness of the proposed fuzzy integrated algorithm.

关 键 词:特征抽取 模糊线性鉴别分析 离群样本 半监督学习 图像识别 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象