利用测地线距离的改进谱聚类算法  被引量:5

An Improved Spectral Clustering Algorithm Using Geodesic Distance

在线阅读下载全文

作  者:杨清宇[1,2] 孙凤伟[2] 张曌[2] 张迪[2] 庄健[3] 

机构地区:[1]西安交通大学机械制造系统工程国家重点实验室,西安710049 [2]西安交通大学电子与信息工程学院,西安710049 [3]西安交通大学机械工程学院,西安710049

出  处:《西安交通大学学报》2012年第8期1-7,共7页Journal of Xi'an Jiaotong University

基  金:国家自然科学基金资助项目(61075001)

摘  要:针对往复式压缩机故障数据空间分布复杂、常规算法不能有效聚类的问题,提出了一种改进的谱聚类算法.该算法使用新的相似度矩阵计算方式,根据故障数据流形分布的特点引入测地线距离取代欧氏距离作为数据间的关系度量;通过计算各数据点的邻域密度因子有效地识别和剔除了噪声点;利用基于密度的局部欧氏距离调整方法对流形间隙过小的区域进行了处理.在几个人工数据集和往复式压缩机故障数据集上的测试结果表明,改进谱聚类算法对于具有流形分布、多尺度、有噪声、流形间隙过小甚至交叉等特点的数据具有很好的聚类能力,聚类准确率比常规的k-均值和MSCA谱聚类算法分别提高了50.86%和8.6%.An improved spectral clustering algorithm is proposed to focus on the problem that the general clustering algorithms are invalid for reciprocating compressor fault data lying on complex manifold. A new affinity matrix is obtained. The geodesic distance replaces the traditional Euclidian distance to measure the similarity of data, and neighborhood-based density factor is used to identify and to remove noise points. Moreover, density-based local Euclidian distance adjustment is introduced into areas with small gap between manifolds. The proposed method is implemented On several artificial datasets and a real reciprocating compressor fault dataset. Experimental results show that the new algorithm can accomplish the clustering for data with noise and multi-scale character, especially when the manifolds have small gaps or crossover between each other. Its accuracy is 50. 86% and 8. 6~ higher than those of k-means and MSCA respectively.

关 键 词:往复式压缩机 谱聚类 测地线距离 欧氏距离调整 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象