检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东华大学信息科学与技术学院,上海201620
出 处:《计算机工程与设计》2012年第8期3149-3153,共5页Computer Engineering and Design
摘 要:针对智能交通系统中运动目标检测阶段存在的不足,提出了一种基于自适应混合高斯模型(GMM)的改进算法。将隔帧差分的方法引入背景建模的初始判别阶段,从而迅速地检测出运动变化区域,提高了算法的灵敏度,同时也增强了对缓慢运行车辆的检测的适用性;将划分出的背景及运动区域赋予不同的更新率,使得背景显露区域得到迅速恢复,消去了运动车辆留下的"影子"。在此较为精确的背景模型下,结合灰度和canny边缘特征进行背景差分,有效地保留了与背景灰度相似的运动目标的轮廓。通过实验证明该检测算法取得了较好的效果。An improved algorithm based on adaptive Gaussian mixture model is proposed to overcome the deficiency in the object detection phase of ITS (intelligent transportation system). At the beginning of background model the interval frame differencing method is put forward to make a judgment, which can rapidly detect the movement area. The sensitivity of the algorithm is im- proved and the adaptability for slow vehicles is enhanced. In order to recover background covered by paused objects when they start to move again, the different update rates in different areas are given, which can eliminate shadow that moving vehicles may leave. Lastly by combining gray and canny edge features background subtraction, moving target outline similar with the back-ground' s gray is effectively retained. Experimental results confirm the good effort of the detection algorithm.
关 键 词:背景减差 混合高斯模型 帧间差分 CANNY算子 运动目标检测
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117