检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡珂立[1] 谷宇章[1] 王营冠[1] 邹方圆[1] 金锋[2]
机构地区:[1]中国科学院无线传感网与通信重点实验室中科院上海微系统与信息技术研究所,上海200050 [2]浙江省嘉兴市公安局交警支队,嘉兴314000
出 处:《电子与信息学报》2012年第8期1827-1832,共6页Journal of Electronics & Information Technology
基 金:国家重大专项03专项(2009ZX03006-003-01);中国科学院知识创新项目(Y15YQA1001)资助课题
摘 要:该文针对多目标的鲁棒跟踪问题,设计了一种基于图像分水岭分割和尺度不变特征变换(SIFT)特征点的多目标全自主跟踪算法。为规避图像平坦区域,提出在原图上叠加规则坡度图的思想,并在浮点域进行一定尺度高斯模糊处理,将区域极小值点作为种子点完成分水岭分割,并将极值点作为目标特征点,通过前后帧分水岭映射生成特征点短时轨迹,自动检测运动目标。之后依据目标所处状态(是否发生遮挡)和分水岭分割图建立、更新目标SIFT特征池,结合分水岭映射、SIFT特征池匹配完成对目标的鲁棒跟踪。实验结果表明,该算法能有效完成视频中多目标的持续跟踪,并对目标遮挡有较好的鲁棒性。For the issue of multi-object robust tracking, a type of watershed segmentation and Scale-Invariant Feature Transform (SIFT) feature points based full-automatic tracking algorithm is presented. To avoid flat area while do watershed segmentation on the image, a regular gradient image is added to the source image. After the Gaussian blurred process is done on the added image in float field, field minimal points are selected as object feature points as well as seed points to do watershed segmentation. Moving object is detected through short time points trajectories derived from watershed region mapping relationship between current and backward image. SIFT feature pool is built and updated based on object occlusion occurred or not and watershed segmentation. With the help of watershed region mapping and feature matching with the SIFT feature pool, object is robustly tracked. Actual tests show that the algorithm can track multi-object well and with a better performance of mutual occlusion robustness.
关 键 词:多目标跟踪 全自主 分水岭分割 尺度不变特征变换(SIFT)
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249