检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京师范大学电气与自动化工程学院,江苏南京210042
出 处:《南京师范大学学报(工程技术版)》2012年第2期7-10,共4页Journal of Nanjing Normal University(Engineering and Technology Edition)
基 金:国家自然科学基金(60704024);江苏省普通高校自然科学研究计划(10KJD510004)
摘 要:提出了采用贝叶斯推理模型BIM(Bayesian inferring model)对时变非线性系统的输出进行在线监测的实现思路和方法.首先描述了时变非线性系统的在线输出监测问题.然后介绍了BIM结构和训练方法,BIM的特点在于训练样本完全采自于在线闭环系统,采用改进的觅食优化算法IEFOA(Improved E.Coli Foraging Optimization Algorithm)离线训练门槛矩阵参数D.而在线预测应用时,采用滑动窗口数据实时更新BIM结构,从而实时跟踪系统的输出变化.最后,利用时变非线性对象对BIM的在线观测能力进行了验证,仿真结果表明BIM适合于系统的输出监测,并且具有设计简单、跟踪性能好等优点,为非线性系统的性能评估提供了一种新的底层数据预测方法.The implementation idea and solution are proposed in this article for the output on-line monitoring of the time- variant nonlinear system by using bayesian inferring model (BIM). Firstly, the on-line monitoring problem of nonlinear system is described. Then the BIM structure and training methods are introduced. The characteristics of the BIM include that the sample data for off-line training are from the closed loop system and the optimization algorithm for the threshold matrix D is selected as the improved foraging optimization algorithm ( IEFOA ). While in the on-line applications, the sliding window data are used to update the structure of the BIM for the on-line tracing of the system output. The time-va- riant nonlinear object is employed to validate the on-line monitoring ability of the BIM. The simulation results indicate that the BIM is adapted to the system on-line output monitoring and owns the characteristics of easy design, high accuracy tracing ability and etc, which provide a kind of data prediction method for the lowest system.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145