基于分形理论的改进型二维最大熵红外图像分割算法  被引量:4

Improved Two-dimensional Maximum Entropy Segmentation Algorithm for Infrared Images Based on Fractal Theory

在线阅读下载全文

作  者:陈洪科[1] 杨晓玲[1] 

机构地区:[1]闽南理工学院电子与电气工程系,福建石狮362700

出  处:《红外》2012年第8期27-31,共5页Infrared

基  金:福建省教育厅A类资助项目(JA11281)

摘  要:提出了一种基于分形理论的改进型二维最大熵红外图像阈值分割算法。该算法利用图像分形维数挖掘像素的空间分布信息,然后将原图像灰度及其分形维数映射图像灰度相结合组成二维随机向量,并构造出联合离散概率分布。在此基础上,以二维最大熵原则来确定一个最佳二维分割阈值,进而取得分割结果。实验结果表明,该算法在分割效果上优于传统的二维最大熵分割算法。An improved two-dimensional maximum entropy segmentation algorithm for infrared images based on fractal theory was proposed. The algorithm uses the image fractal dimension to excavate the spatial distribution information in image pixels. Then, it combines the original image grayscale with the mapped image grayscale from the fractal dimension to form a two-dimensional random vector and construct its joint probability distribution. On that basis, the two-dimensional maximum entropy principle is used to determine an optimal two-dimensional segmentation threshold and hence to obtain the final segmentation result. The experimental result shows that the improved algorithm is better than the traditional two-dimensional maximum entropy segmentation algorithm in segmentation effectiveness.

关 键 词:分形维数 二维最大熵 红外图像 目标分割 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象