采用扰动加速因子的自适应粒子群优化算法  被引量:70

Adaptive particle swarm optimization via disturbing acceleration coefficents

在线阅读下载全文

作  者:姜建国[1] 田旻[1] 王向前[2] 龙秀萍[1] 李锦[1] 

机构地区:[1]西安电子科技大学计算机学院,陕西西安710071 [2]平顶山学院师范教育学院,河南平顶山467002

出  处:《西安电子科技大学学报》2012年第4期74-80,共7页Journal of Xidian University

基  金:国家部委基础科研计划资助项目(D1120060967)

摘  要:针对粒子群算法容易陷入早熟收敛和搜索效率不高等问题,分析了几个现有的改进粒子群优化算法.在粒子对称分布有利于提高搜索结果的基础上,对粒子群优化算法进行了改进.改进后的算法可以在运行过程中的不同阶段自适应地以余弦函数的变化方式调整惯性权重系数;在加速因子线性变化的基础上,基于一定的条件对加速因子进行扰动;并确定了相应条件参数的参数取值.通过几个经典的函数,对该算法进行了验证,并与相关文献中改进的粒子群优化算法进行了对比.结果表明,新算法不仅显著提高了收敛速度,而且能有效地改善早熟现象.The Particle Swarm Optimization (PSO) is an evolutionary method which is used to search for the global optimal solution by iteration. However, PSO has the problem that the particle swarm algorithm falls easily into premature convergence and has a low search efficiency. In this paper, after analyzing several existing improved particle swarm algorithms, a new improved particle swarm algorithm is proposed based on the fact that symmetrical particles distribution can enhance the optimation search results. The proposed algorithm can adjust the inertia weight factor adaptively in different phases of the process according to the variation of the cosine function. In addition, the acceleration coefficents based on linear variation are disturbed under a certain condition. Moreover, an appropriate value of the parameter in this condition is determined via experiments. Several classic functions have been used to test this new algorithm and then the results of this new algorithm are analyzed by comparing it with several relevant algorithms in the literature. The results show that this new algorithm can not only improve the convergence speed significantly, but also improve the premature convergence phenomenon.

关 键 词:粒子群优化 加速因子 惯性权重系数 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象